ZEFFIX Tablets

ZEFFIX Oral Solution

| WARNING: LACTIC ACIDOSIS AND SEVERE HEPATOMEGALY WITH STEATOSIS, EXACERBATIONS OF HEPATITIS B AND RISK OF HIV-1 RESISTANCE IF ZEFFIX IS USED IN PATIENTS WITH UNRECOGNIZED OR UNTREATED HIV-1 |

LACTIC ACIDOSIS AND SEVERE HEPATOMEGALY WITH STEATOSIS, INCLUDING FATAL CASES, HAVE BEEN REPORTED WITH THE USE OF NUCLEOSIDE ANALOGUES AND OTHER ANTIRETROVIRALS. DISCONTINUE ZEFFIX IF CLINICAL OR LABORATORY FINDINGS SUGGESTIVE OF LACTIC ACIDOSIS OR PRONOUNCED HEPATOTOXICITY OCCUR [see Warnings and Precautions (5.1)].

SEVERE ACUTE EXACERBATIONS OF HEPATITIS B HAVE BEEN REPORTED IN PATIENTS WHO HAVE DISCONTINUED ANTI-HEPATITIS B THERAPY (INCLUDING ZEFFIX). HEPATIC FUNCTION SHOULD BE MONITORED CLOSELY WITH BOTH CLINICAL AND LABORATORY FOLLOW-UP FOR AT LEAST SEVERAL MONTHS IN PATIENTS WHO DISCONTINUE ANTI-HEPATITIS B THERAPY. IF APPROPRIATE, INITIATION OF ANTI-HEPATITIS B THERAPY MAY BE WARRANTED [see Warnings and Precautions (5.2)].

ZEFFIX IS NOT APPROVED FOR THE TREATMENT OF HIV-1 INFECTION BECAUSE THE LAMIVUDINE DOSAGE IN ZEFFIX IS SUBTHERAPEUTIC AND MONOTHERAPY IS INAPPROPRIATE FOR THE TREATMENT OF HIV-1 INFECTION. HIV-1 RESISTANCE MAY EMERGE IN CHRONIC HEPATITIS B-INFECTED PATIENTS WITH UNRECOGNIZED OR UNTREATED HIV-1 INFECTION. HIV COUNSELING AND TESTING SHOULD BE OFFERED TO ALL PATIENTS BEFORE BEGINNING TREATMENT WITH ZEFFIX AND PERIODICALLY DURING TREATMENT [see Warnings and Precautions (5.3)].

1. INDICATIONS AND USAGE

ZEFFIX is indicated for the treatment of chronic hepatitis B virus (HBV) infection associated with evidence of hepatitis B viral replication and active liver inflammation in adults and also in children and adolescents aged 2 to 17 years old. See Clinical Studies (14.1, 14.2).

The following points should be considered when initiating therapy with ZEFFIX:

Due to high rates of resistance development in treated patients, initiation of treatment with ZEFFIX should only be considered when the use of an alternative antiviral agent with a
higher genetic barrier to resistance is not available or appropriate.

- ZEFFIX has not been evaluated in patients co-infected with HIV, hepatitis C virus (HCV), or hepatitis delta virus.
- ZEFFIX has not been evaluated in liver transplant recipients or in patients with chronic hepatitis B virus infection with decompensated liver disease.

2. DOSAGE AND ADMINISTRATION

2.1 HIV Counseling and Testing
HIV counseling and testing should be offered to all patients before beginning treatment with ZEFFIX and periodically during treatment because of the risk of emergence of resistant-HIV-1 and limitation of treatment options if ZEFFIX is prescribed to treat chronic hepatitis B infection in a patient who has unrecognized HIV-1 infection or acquires HIV-1 infection during treatment [see Warnings and Precautions (5.3)].

2.2 Recommended Dosage for Adult Patients
The recommended oral dosage of ZEFFIX is 100 mg once daily.

2.3 Recommended Dosage for Pediatric Patients
The recommended oral dosage of ZEFFIX for pediatric patients aged 2 to 17 years is 3 mg per kg once daily up to a maximum daily dosage of 100 mg.

The oral solution formulation should be prescribed for patients requiring a dosage less than 100 mg or if unable to swallow tablets.

2.4 Patients With Renal Impairment
Dosage recommendations for adult patients with reduced renal function are provided in Table 1 [see Clinical Pharmacology (12.3)].

<table>
<thead>
<tr>
<th>Creatinine Clearance (mL/min)</th>
<th>Recommended Dosage of ZEFFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥50</td>
<td>100 mg once daily</td>
</tr>
<tr>
<td>30-49</td>
<td>100 mg first dose, then 50 mg once daily</td>
</tr>
<tr>
<td>15-29</td>
<td>100 mg first dose, then 25 mg once daily</td>
</tr>
<tr>
<td>5-14</td>
<td>35 mg first dose, then 15 mg once daily</td>
</tr>
<tr>
<td><5</td>
<td>35 mg first dose, then 10 mg once daily</td>
</tr>
</tbody>
</table>

Following correction of the dosage for renal impairment, no additional dosage modification of ZEFFIX is required after routine (4-hour) hemodialysis or peritoneal dialysis [see Clinical Pharmacology (12.3)].

There are insufficient data to recommend a specific dosage of ZEFFIX in pediatric patients with renal impairment.

2.5 Important Administration Instructions
- ZEFFIX tablets and oral solution may be administered with or without food.
- The tablets and oral solution may be used interchangeably [see Clinical Pharmacology (12.3)].
- The oral solution should be used for doses less than 100 mg.
- ZEFFIX should not be used with other medications that contain lamivudine or
medications that contain emtricitabine.

2.6 Assessing Patients during Treatment
Patients should be monitored regularly during treatment by a physician experienced in the management of chronic hepatitis B. During treatment, combinations of events such as return of persistently elevated ALT, increasing levels of HBV DNA over time after an initial decline below assay limit, progression of clinical signs or symptoms of hepatic disease, and/or worsening of hepatic necroinflammatory findings may be considered as potentially reflecting loss of therapeutic response. Such observations should be taken into consideration when determining the advisability of continuing therapy with ZEFFIX.

The optimal duration of treatment, the durability of HBeAg seroconversions occurring during treatment, and the relationship between treatment response and long-term outcomes such as hepatocellular carcinoma or decompensated cirrhosis are not known.

3. DOSAGE FORMS AND STRENGTHS
• ZEFFIX tablets: 100 mg, butterscotch-colored, film-coated, biconvex, capsule-shaped tablets engraved with “GX CG5” on one side.

• ZEFFIX oral solution: A clear, colorless to pale yellow in solution, with the odour of fruit, containing 5 mg of lamivudine per 1 mL.

5. CONTRAINDICATIONS
ZEFFIX is contraindicated in patients with a previous hypersensitivity reaction to lamivudine or to any component of the tablets or oral solution.

WARNINGS AND PRECAUTIONS
5.1 Lactic Acidosis and Severe Hepatomegaly with Steatosis
Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues and other antiretrovirals. A majority of these cases have been in women. Obesity and prolonged nucleoside exposure may be risk factors. Most of these reports have described patients receiving nucleoside analogues for treatment of HIV infection, but there have been reports of lactic acidosis in patients receiving lamivudine for hepatitis B. Caution should be exercised when administering ZEFFIX to any patient with known risk factors for liver disease; however, cases also have been reported in patients with no known risk factors. Treatment with ZEFFIX should be suspended in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).

5.2 Exacerbations of Hepatitis after Discontinuation of Treatment
Clinical and laboratory evidence of exacerbations of hepatitis have occurred after discontinuation of lamivudine (These exacerbations have been detected primarily by serum ALT elevations, in addition to re-emergence of HBV DNA commonly observed after
stopping treatment; see Table 4 for more information regarding frequency of posttreatment ALT elevations [see Adverse Reactions (6.1)]. Although most events appear to have been self-limited, fatalities have been reported in some cases. The causal relationship to discontinuation of lamivudine treatment is unknown. Patients should be closely monitored with both clinical and laboratory follow-up for at least several months after stopping treatment with ZEFFIX. There is insufficient evidence to determine whether re-initiation of ZEFFIX alters the course of posttreatment exacerbations of hepatitis.

5.3 Risk of HIV-1 Resistance if ZEFFIX is Used in Patients with Unrecognized or Untreated HIV-1 Infection

Zeffix tablets and oral solution contain a lower lamivudine dose than the lamivudine dose used to treat HIV-1 infection with EPIVIR tablets and oral solution or with lamivudine-containing antiretroviral fixed-dose combination products.

ZEFFIX is not appropriate for patients co-infected with HBV and HIV-1. If a patient with unrecognized or untreated HIV-1 infection is prescribed Zeffix for the treatment of HBV, rapid emergence of HIV-1 resistance is likely to result because of the subtherapeutic dose and the inappropriate use of monotherapy for HIV-1 treatment. HIV counseling and testing should be offered to all patients before beginning treatment with ZEFFIX and periodically during treatment because of the risk of rapid emergence of resistant HIV-1 and limitation of treatment options if ZEFFIX is prescribed to treat chronic hepatitis B in a patient who has unrecognized or untreated HIV-1 infection or who acquires HIV-1 infection during treatment.

5.4 Emergence of Resistance-Associated HBV Substitutions

In controlled clinical trials, YMDD-mutant HBV was detected in subjects with on ZEFFIX re-appearance of HBV DNA after an initial decline below the solution-hybridization assay limit [see Microbiology (12.4)]. Subjects treated with ZEFFIX (adults and children) with YMDD-mutant HBV at 52 weeks showed diminished treatment responses in comparison with subjects treated with ZEFFIX without evidence of YMDD substitutions, including the following: lower rates of HBeAg seroconversion and HBeAg loss (no greater than placebo recipients), more frequent return of positive HBV DNA, and more frequent ALT elevations. In the controlled trials, when subjects developed YMDD-mutant HBV, they had a rise in HBV DNA and ALT from their own previous on-treatment levels. Progression of hepatitis B, including death, has been reported in some subjects with YMDD-mutant HBV, including subjects from the liver transplant setting and from other clinical trials. In clinical practice, monitoring of ALT and HBV DNA levels during treatment with ZEFFIX may aid in treatment decisions if emergence of viral mutants is suspected.

Patients with rare hereditary problems of fructose intolerance, glucose-galactose malabsorption or sucrase-isomaltase insufficiency should not take this medicine.
Diabetic patients should be advised that each dose of oral solution (100 mg = 20 ml) contains 4 g of sucrose. The oral solution contains propyl and methyl parahydroxybenzoate. These products may cause an allergic reaction in some individuals. This reaction may be delayed.

6. ADVERSE REACTIONS

The following adverse reactions are discussed in other sections of the labeling:

- Lactic acidosis and severe hepatomegaly with steatosis [see Warnings and Precautions (5.1)].
- Exacerbations of hepatitis B after discontinuation of treatment [see Warnings and Precautions (5.2)].
- Risk of emergence of resistant HIV-1 infection [see Warnings and Precautions (5.3)].
- Risk of emergence of resistant HBV infection [see Warnings and Precautions (5.4)].

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

Clinical Trials Experience in Adult subjects with Chronic HBV Infection

Clinical adverse reactions (regardless of investigator’s causality assessment) reported in greater than or equal to 10% of subjects who received Zeffix and reported at a rate greater than in subjects who received placebo are listed in Table 2.

Table 2. Clinical Adverse Reactions\(^a\) Reported in Greater than or Equal to 10% of Subjects who Received Zeffix for 52 to 68 Weeks and at an Incidence Greater than Placebo (Trials 1-3)

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>ZEFFIX (n = 332)</th>
<th>Placebo (n = 200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ear, nose, and throat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear, nose, and throat infections</td>
<td>25%</td>
<td>21%</td>
</tr>
<tr>
<td>Sore throat</td>
<td>13%</td>
<td>8%</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>14%</td>
<td>12%</td>
</tr>
</tbody>
</table>

\(^a\)Includes adverse events regardless of severity and causality assessment.

Specified laboratory abnormalities reported in subjects who received ZEFFIX and reported at a rate greater than in subjects who received placebo are listed in Table 3.
Table 3. Frequencies of Specified Laboratory Abnormalities Reported during Treatment at a Greater Frequency in Subjects Treated with ZEFFIX than with Placebo (Trials 1-3)\(^a\)

<table>
<thead>
<tr>
<th>Test (Abnormal Level)</th>
<th>ZEFFIX</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Lipase ≥2.5 x ULN(^b)</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>CPK ≥7 x baseline</td>
<td>9%</td>
<td>5%</td>
</tr>
<tr>
<td>Platelets <50,000/mm(^3)</td>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>

\(^a\) Includes subjects treated for 52 to 68 weeks.

\(^b\) Includes observations during and after treatment in the 2 placebo-controlled trials that collected this information.

ULN = Upper limit of normal.

In subjects followed for up to 16 weeks after discontinuation of treatment, posttreatment ALT elevations were observed more frequently in subjects who had received ZEFFIX than in subjects who had received placebo. A comparison of ALT elevations between Weeks 52 and 68 in subjects who discontinued ZEFFIX at Week 52 and subjects in the same trials who received placebo throughout the treatment course is shown in Table 4.

Table 4. Posttreatment ALT Elevations with No-Active-Treatment Follow-up (Trials 1 and 3)

<table>
<thead>
<tr>
<th>Abnormal Value</th>
<th>Subjects with ALT Elevation/ Subjects with Observations(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zeffix(^b)</td>
</tr>
<tr>
<td>ALT ≥2 x baseline value</td>
<td>27%</td>
</tr>
<tr>
<td>ALT ≥3 x baseline value(^c)</td>
<td>21%</td>
</tr>
<tr>
<td>ALT ≥2 x baseline value and absolute ALT >500 IU/L</td>
<td>15%</td>
</tr>
<tr>
<td>ALT ≥2 x baseline value; and bilirubin >2 x ULN and ≥2 x baseline value</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

\(^a\) Each subject may be represented in one or more category.

\(^b\) During treatment phase.

\(^c\) Comparable to a Grade 3 toxicity in accordance with modified WHO criteria.

ULN = Upper limit of normal.

Clinical Trials Experience in Pediatric Subjects with Chronic HBV Infection

Most commonly observed adverse reactions in the pediatric trials were similar to those in adult trials. Posttreatment transaminase elevations were observed in some subjects followed after cessation of ZEFFIX.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of ZEFFIX. Because these reactions are reported voluntarily from a population of unknown size, it is not always possible to reliably estimate their frequency or establish a causal relationship.
to drug exposure. These reactions have been chosen for inclusion due to a combination of their seriousness, frequency of reporting, or potential causal connection to lamivudine.

______ Blood and Lymphatic

______ Anemia (including pure red cell aplasia and severe anemias progressing on therapy), lymphadenopathy, splenomegaly, Thrombocytopenia.

Digestive

Stomatitis.

Endocrine and Metabolic

Hyperglycemia.

General

Weakness.

______ Hepatic and Pancreatic:

Lactic acidosis and steatosis [see Warnings and Precautions (5.1)], posttreatment exacerbations of hepatitis [see Warnings and Precautions (5.2)], pancreatitis.

______ Hypersensitivity:

Anaphylaxis, urticaria.

______ Musculoskeletal:

Cramps, rhabdomyolysis.

______ Nervous:

Paresthesia, peripheral neuropathy.

______ Respiratory:

Abnormal breath sounds/wheezing.

______ Skin:

Alopecia, pruritus, rash.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Any suspected adverse events should be reported to the Ministry of Health according to the National Regulation by using an online form https://forms.gov.il/globaldata/getsequence/getsequence.aspx?formType=AdversEffectMedic@moh.gov.il. Additionally, you should also report to GSK Israel (il.safety@gsk.com).

7. DRUG INTERACTIONS

7.1 Drug Inhibiting Organic Cation Transporters

Lamivudine is predominantly eliminated in the urine by active organic cationic secretion. The possibility of interactions with other drugs administered concurrently should be considered, particularly when their main route of elimination is active renal secretion via the organic cationic transport system (e.g., trimethoprim) [see Clinical Pharmacology (12.3)]. No data are available regarding interactions with other drugs that have renal clearance mechanisms.
similar to that of lamivudine.

7.2 Sorbitol

Coadministration of single doses of lamivudine and sorbitol resulted in a sorbitol dose-dependent reduction in lamivudine exposures. When possible, avoid use of sorbitol-containing medicines with lamivudine [see Clinical Pharmacology (12.3)]. Consider more frequent monitoring of HBV viral load when chronic coadministration cannot be avoided.

8. USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Available data from the APR show no substantial difference in the risk of overall major birth defects for lamivudine compared with the background rate for major birth defects of 2.7% reported in the U.S. reference population of the Metropolitan Atlanta Congenital Defects Program (MACDP). The APR uses the MACDP as a U.S. reference population for birth defects in the general population. The MACDP evaluates women and infants from a limited geographic area and does not include outcomes for births that occur at less than 20 weeks gestation. Of over 11,000 women exposed to lamivudine in the APR, less than 1% were treated for HBV. The majority of women exposed to lamivudine in the APR were HIV-1-infected and were treated with higher doses of lamivudine compared with HBV mono-infected women. In addition to lamivudine, HIV-1-infected women were also treated with other concomitant medications for HIV-1 infection [see Data]. The estimated rate of miscarriage for women exposed to lamivudine in the indicated population is unknown. The estimated background rate of miscarriage in clinically recognized pregnancies in the U.S. general population is 15% to 20%.

Oral administration of lamivudine to pregnant rabbits during organogenesis resulted in embryolethality at systemic exposure (AUC) similar to the recommended clinical dose; however, no adverse developmental effects were observed with oral administration of lamivudine to pregnant rats during organogenesis at plasma concentrations (C_{max}) 60 times the recommended clinical dose [see Data].

Data

Human Data: Based on prospective reports from the APR of over 11,000 exposures to lamivudine (including over 4,600 exposed in the first trimester) during pregnancy resulting in live births, less than 1% of which were patients with HBV, there was no substantial difference in birth defects with lamivudine compared with the birth defect rate of 2.7% observed in the comparator population of the MACDP. The prevalence of birth defects in live births was 3.1% (95% CI: 2.6% to 3.6%) following first trimester exposure to lamivudine-containing regimens and 2.8% (95% CI: 2.5% to 3.3%) following second/third trimester exposure to lamivudine-containing regimens.
The pharmacokinetics of lamivudine in patients with HBV or HIV-1 infection and in healthy volunteers are similar at similar doses. Lamivudine pharmacokinetics were studied in pregnant women with HIV-1 infection during 2 clinical trials conducted in South Africa. The trials assessed pharmacokinetics in 16 women at 36 weeks gestation using 150 mg lamivudine twice daily (3 times the recommended daily dosage for HBV) with zidovudine, 10 women at 38 weeks gestation using 150 mg lamivudine twice daily (3 times the recommended daily dosage for HBV) with zidovudine, and 10 women at 38 weeks gestation using lamivudine 300 mg twice daily (6 times the recommended daily dosage for HBV) without other antiretrovirals. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples. In a subset of subjects, amniotic fluid specimens were collected following natural rupture of membranes and confirmed that lamivudine crosses the placenta in humans. Based on limited data at delivery, median (range) amniotic fluid concentrations of lamivudine were 3.9- (1.2- to 12.8-) fold greater compared with paired maternal serum concentrations (n = 8).

Animal Data: Lamivudine was administered orally to pregnant rats (at 90, 600, and 4,000 mg per kg per day) and rabbits (at 90, 300, and 1,000 mg per kg per day and at 15, 40, and 90 mg per kg per day) during organogenesis (on gestation Days 7 through 16 [rat] and 8 through 20 [rabbit]). No evidence of fetal malformations due to lamivudine was observed in rats and rabbits at doses producing plasma concentrations (Cmax) approximately 53 or more times higher than human exposure at the recommended daily dose. Evidence of early embryolethality in the absence of maternal toxicity was seen in the rabbit at systemic exposures (AUC) similar to those observed in humans, but there was no indication of this effect in the rat at plasma concentrations (Cmax) 60 times higher than human exposure at the recommended daily dose. Studies in pregnant rats showed that lamivudine is transferred to the fetus through the placenta. In the fertility/pre-and postnatal development study in rats, lamivudine was administered orally at doses of 180, 900, and 4,000 mg per kg per day (from prior to mating through postnatal Day 20). In the study, development of the offspring, including fertility and reproductive performance, was not affected by maternal administration of lamivudine at plasma concentrations (Cmax) 104 times higher than human exposure.

8.2 Lactation

Risk Summary

Lamivudine is present in human milk. There is no information available regarding lamivudine concentrations in milk from lactating women receiving lamivudine for treatment of HBV infection. However, in lactating women with HIV-1 infection being treated with lamivudine at 3 or 6 times the recommended daily dose for HBV, lamivudine concentrations in milk were similar to those observed in serum [see Data]. The lamivudine dose received by a breastfed infant of a mother being treated for HIV-1 infection was estimated to be approximately 6% of the recommended daily lamivudine dose for HBV in children over 2 years of age.
There is no information available regarding the effects of the drug on the breastfed infant or on milk production.

The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for Zeffix and any potential adverse effects on the breastfed infant from lamivudine or from the underlying maternal condition.

Data

In mothers with HIV receiving lamivudine monotherapy (300 mg twice daily [6 times the recommended daily dosage for HBV]) or combination therapy (150 mg lamivudine twice daily [3 times the recommended daily dosage for HBV] with 300 mg zidovudine twice daily), the median breast milk to plasma lamivudine concentration ratio was 0.6 to 3.3, and the estimated infant daily dose was approximately 6% of the recommended 3-mg-per-kg daily lamivudine dose for treatment of HBV in children over 2 years of age. In breastfed infants of mothers with HIV-1 infection receiving lamivudine therapy, the blood concentrations of lamivudine decreased after delivery and were undetectable at 6 months despite constant milk concentrations. This is consistent with increased lamivudine renal clearance in the first 6 months of life.

8.4 Pediatric Use

ZEFFIX is indicated for the treatment of chronic hepatitis B virus infection in pediatric patients aged 2 to 17 years [see Indications and Usage (1), Clinical Pharmacology (12.3), Clinical Studies (14.2)]. The safety and efficacy of ZEFFIX in pediatric patients younger than 2 years have not been established.

8.5 Geriatric Use

Clinical trials of ZEFFIX did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, caution should be exercised in the administration of Zeffix in elderly patients reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. [see Dosage and Administration (2.4), Clinical Pharmacology (12.3)].

8.6 Patients with Impaired Renal Function

Reduction of the dosage of ZEFFIX is recommended for patients with impaired renal function [see Dosage and Administration (2.4), Clinical Pharmacology (12.3)].

8.7 Patients with Impaired Liver Function

No dose adjustment for lamivudine is required for patients with impaired hepatic function.

10. OVERDOSAGE

There is no known specific treatment for overdose with ZEFFIX. If overdose occurs, the patient should be monitored, and standard supportive treatment applied, as required.

Because a negligible amount of lamivudine was removed via (4-hour) hemodialysis, continuous ambulatory peritoneal dialysis, and automated peritoneal dialysis, it is not known if continuous hemodialysis would provide clinical benefit in a lamivudine overdose event.
11. DESCRIPTION:

ZEFFIX is a synthetic nucleoside analogue with activity against HBV. The chemical name of lamivudine is \((2R,\text{cis})\)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one. Lamivudine is the (-)-enantiomer of a dideoxy analogue of cytidine. Lamivudine has also been referred to as \((-\))2',3'-dideoxy, 3'-thiacytidine. It has a molecular formula of \(\text{C}_8\text{H}_{11}\text{N}_3\text{O}_3\text{S}\) and a molecular weight of 229.3 g per mol. It has the following structural formula:

![Structural formula of lamivudine](image)

Lamivudine is a white to off-white crystalline solid with a solubility of approximately 70 mg per mL in water at 20°C.

ZEFFIX Tablets are for oral administration. Each tablet contains 100 mg of lamivudine and the inactive ingredients microcrystalline cellulose, sodium starch glycolate Type A, magnesium stearate. Film Coat – Butterscotch coloured film-coating material YS-1R-17307-A composed of the following ingredients: Hypromellose, Titanium Dioxide, (E171), Macrogol 400, Synthetic Yellow Iron Oxide (E172), Polysorbate 80, Synthetic Red Iron Oxide (E172).

ZEFFIX Oral Solution is for oral administration. One milliliter (1 mL) of ZEFFIX Oral Solution contains 5 mg of lamivudine (5 mg per mL) in an aqueous solution and the inactive ingredients sucrose (200 %W/V), propylene glycol, sodium citrate, Methyl Parahydroxybenzoate (E218), citric acid (anhydrous), artificial strawberry and banana flavors and Propyl Parahydroxybenzoate (E216), Dilute Hydrochloric Acid/ Sodium Hydroxide Solution, Purified Water.

12. CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Lamivudine is an antiviral agent with activity against HBV [see Microbiology (12.4)].

12.3 Pharmacokinetics

Pharmacokinetics in Adults

The pharmacokinetic properties of lamivudine have been studied as single and multiple oral doses ranging from 5 mg to 600 mg per day administered to HBV-infected subjects.

Absorption and Bioavailability: Following single oral doses of 100 mg, the peak serum lamivudine concentration \((C_{\text{max}}) \) in HBV-infected patients (steady state) and healthy subjects (single dose) was 1.28 ± 0.56 mcg per mL and 1.05 ± 0.32 mcg per mL (mean ± SD), respectively, which occurred between 0.5 and 2 hours after administration. The area under the plasma concentration versus time curve \((\text{AUC}_{0-24\text{h}}) \) following 100-mg lamivudine oral single and repeated daily doses to steady state was 4.3 ± 1.4 (mean ± SD) and 4.7 ± 1.7 mcg•hour
per mL, respectively. The relative bioavailability of the tablet and oral solution were
demonstrated in healthy subjects. Although the solution demonstrated a slightly higher peak
serum concentration (C_{max}), there was no significant difference in systemic exposure (AUC)
between the oral solution and the tablet. Therefore, the oral solution and the tablet may be
used interchangeably.

After oral administration of lamivudine once daily to HBV-infected adults, the AUC and C_{max}
increased in proportion to dose over the range from 5 mg to 600 mg once daily.

Absolute bioavailability in 12 adult subjects was $86\% \pm 16\%$ (mean \pm SD) for the 150-mg
tablet and $87\% \pm 13\%$ for the 10-mg per mL oral solution.

Effects of Food on Oral Absorption: Zeffix tablets and oral solution may be administered with
or without food. The 100-mg tablet was administered orally to 24 healthy subjects on
2 occasions, once in the fasted state and once with food (standard meal: 967 kcal; 67 grams
fat, 33 grams protein, 58 grams carbohydrate). There was no significant difference in
systemic exposure (AUC) in the fed and fasted states.

Distribution: The apparent volume of distribution after IV administration of lamivudine to
20 HIV-1-infected subjects was 1.3 ± 0.4 L per kg, suggesting that lamivudine distributes
into extravascular spaces. Volume of distribution was independent of dose and did not
correlate with body weight.

Binding of lamivudine to human plasma proteins is less than 36%. In vitro studies showed
that over the concentration range of 0.1 to 100 mcg per mL, the amount of lamivudine
associated with erythrocytes ranged from 53% to 57% and was independent of concentration.

Metabolism: Metabolism of lamivudine is a minor route of elimination. In humans, the only
known metabolite of lamivudine is the trans-sulfoxide metabolite (approximately 5% of an
oral dose after 12 hours). Serum concentrations of this metabolite have not been determined.
Lamivudine is not significantly metabolized by cytochrome P450 enzymes.

Elimination: The majority of lamivudine is eliminated unchanged in urine by active organic
cationic secretion. In 9 healthy subjects given a single 300-mg oral dose of lamivudine, renal
clearance was 199.7 ± 56.9 mL per min (mean \pm SD). In 20 HIV-1-infected subjects given a
single IV dose, renal clearance was 280.4 ± 75.2 mL per min (mean \pm SD), representing
71\% $\pm 16\%$ (mean \pm SD) of total clearance of lamivudine.

In most single-dose trials in HIV-1-infected subjects, HBV-infected subjects, or
healthy subjects with serum sampling for 24 hours after dosing, the observed mean
elimination half-life ($t_{1/2}$) ranged from 5 to 7 hours. In HIV-1-infected subjects, total clearance
was 398.5 ± 69.1 mL per min (mean \pm SD). Oral clearance and elimination half-life were
independent of dose and body weight over an oral dosing range of 0.25 to 10 mg per kg.

Specific Populations:

Patients with Renal Impairment: The pharmacokinetic properties of lamivudine have been
determined in healthy adults and in adults with impaired renal function, with and without
hemodialysis (Table 5).
Table 5: Pharmacokinetic Parameters (Mean ± SD) Dose-Normalized to a Single 100-mg Oral Dose of Lamivudine in Adults with Varying Degrees of Renal Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Creatinine Clearance Criterion (Number of Subjects)</th>
<th>≥80 mL/min (n = 9)</th>
<th>20-59 mL/min (n = 8)</th>
<th><20 mL/min (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine clearance (mL/min)</td>
<td></td>
<td>97 (range 82-117)</td>
<td>39 (range 25-49)</td>
<td>15 (range 13-19)</td>
</tr>
<tr>
<td>C\text{max} (mcg/mL)</td>
<td></td>
<td>1.31 ± 0.35</td>
<td>1.85 ± 0.40</td>
<td>1.55 ± 0.31</td>
</tr>
<tr>
<td>AUC (mcg\cdot h/mL)</td>
<td></td>
<td>5.28 ± 1.01</td>
<td>14.67 ± 3.74</td>
<td>27.33 ± 6.56</td>
</tr>
<tr>
<td>Cl/F (mL/min)</td>
<td></td>
<td>326.4 ± 63.8</td>
<td>120.1 ± 29.5</td>
<td>64.5 ± 18.3</td>
</tr>
</tbody>
</table>

T\text{max} was not significantly affected by renal function. Based on these observations, it is recommended that the dosage of lamivudine be modified in patients with renal impairment [see Dosage and Administration (2.4)]. Hemodialysis increases lamivudine clearance from a mean of 64 to 88 mL per min; however, the length of time of hemodialysis (4 hours) was insufficient to significantly alter mean lamivudine exposure after a single-dose administration. Continuous ambulatory peritoneal dialysis and automated peritoneal dialysis have negligible effects on lamivudine clearance. Therefore, it is recommended, following correction of dose for creatinine clearance, that no additional dose modification be made after routine hemodialysis or peritoneal dialysis.

The effects of renal impairment on lamivudine pharmacokinetics in pediatric patients with chronic hepatitis B is not known.

Patients with Hepatic Impairment: The pharmacokinetic properties of lamivudine in adults with hepatic impairment are shown in Table 6. Subjects were stratified by severity of hepatic impairment.

Table 6: Pharmacokinetic Parameters (Mean ± SD) Dose-Normalized to a Single 100-mg Dose of Lamivudine in Adults with Normal or Impaired Hepatic Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal (n = 8)</th>
<th>Impairment*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate (n = 8)</td>
<td>Severe (n = 8)</td>
</tr>
<tr>
<td>C\text{max} (mcg/mL)</td>
<td>0.92 ± 0.31</td>
<td>1.06 ± 0.58</td>
</tr>
<tr>
<td>AUC (mcg\cdot h/mL)</td>
<td>3.96 ± 0.58</td>
<td>3.97 ± 1.36</td>
</tr>
<tr>
<td>T\text{max} (h)</td>
<td>1.3 ± 0.8</td>
<td>1.4 ± 0.8</td>
</tr>
<tr>
<td>Cl/F (mL/min)</td>
<td>424.7 ± 61.9</td>
<td>456.9 ± 129.8</td>
</tr>
<tr>
<td>Clr (mL/min)</td>
<td>279.2 ± 79.2</td>
<td>323.5 ± 100.9</td>
</tr>
</tbody>
</table>

* Hepatic impairment assessed by aminopyrine breath test.

Pharmacokinetic parameters were not altered by diminishing hepatic impairment. Safety and efficacy of ZEFIX have not been established in the presence of decompensated liver disease [see Indications and Usage (1)].

Patients Post-Hepatic Transplant: Fourteen HBV-infected adult subjects received liver
transplant following lamivudine therapy and completed pharmacokinetic assessments at enrollment, 2 weeks after 100-mg once-daily dosing (pre-transplant), and 3 months following transplant; there were no significant differences in pharmacokinetic parameters. The overall exposure of lamivudine is primarily affected by renal impairment; consequently, transplant patients with renal impairment had generally higher exposure than patients with normal renal function. Safety and efficacy of ZEFFIX have not been established in this population [*see Indications and Usage (1)*].

Pregnant Women: The pharmacokinetics of lamivudine in patients with HBV or HIV-1 infection and in healthy volunteers were similar at similar doses. Lamivudine pharmacokinetics were studied in 36 pregnant women with HIV during 2 clinical trials conducted in South Africa (3 to 6 times the recommended daily dosage for HBV). Lamivudine pharmacokinetics in pregnant women were similar to those seen in non-pregnant adults and in postpartum women. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples.

Pediatric Patients: Lamivudine pharmacokinetics were evaluated in a 28-day dose-ranging trial in 53 pediatric subjects with chronic hepatitis B. Subjects aged 2 to 12 years were randomized to receive lamivudine 0.35 mg per kg twice daily, 3 mg per kg once daily, 1.5 mg per kg twice daily, or 4 mg per kg twice daily. Subjects aged 13 to 17 years received lamivudine 100 mg once daily. Lamivudine T_{max} was 0.5 to 1 hour. In general, both C_{max} and exposure (AUC) showed dose proportionality in the dosing range studied. Weight-corrected oral clearance was highest at age 2 and declined from 2 to 12 years, where values were then similar to those seen in adults. A dose of 3 mg per kg given once daily produced a steady-state lamivudine AUC (mean 5,953 ng•hour per mL ± 1,562 SD) similar to that associated with a dose of 100 mg per day in adults.

Geriatric Patients: The pharmacokinetics of lamivudine after administration of Zeffix to subjects over 65 years have not been studied [*see Use in Specific Populations (8.5)*].

Male and Female Patients: There are no significant or clinically relevant gender differences in lamivudine pharmacokinetics.

Racial Groups: There are no significant or clinically relevant racial differences in lamivudine pharmacokinetics.

Drug Interaction Studies:

Effect of Lamivudine on the Pharmacokinetics of Other Agents: Based on in vitro study results, lamivudine at therapeutic drug exposures is not expected to affect the pharmacokinetics of drugs that are substrates of the following transporters: organic anion transporter polypeptide 1B1/3 (OATP1B1/3), breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), multidrug and toxin extrusion protein 1 (MATE1), MATE2-K, organic cation transporter 1 (OCT1), OCT2 or OCT3.

Effect of Other Agents on the Pharmacokinetics of Lamivudine: Lamivudine is a substrate of MATE1, MATE2-K, and OCT2 in vitro. Trimethoprim (an inhibitor of these drug transporters) has been shown to increase lamivudine plasma concentrations. This interaction is not considered clinically significant, and no dose adjustment of lamivudine is needed.
Lamivudine is a substrate of P-gp and BCRP; however, considering its absolute bioavailability (87%), it is unlikely that these transporters play a significant role in the absorption of lamivudine. Therefore, coadministration of drugs that are inhibitors of these efflux transporters is unlikely to affect the disposition and elimination of lamivudine.

Interferon Alfa: There was no significant pharmacokinetic interaction between lamivudine and interferon alfa in a trial of 19 healthy male subjects.

Ribavirin: In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV-1/HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi-drug regimen to HIV-1/HCV co-infected subjects.

Sorbitol (Excipient): Lamivudine and sorbitol solutions were coadministered to 16 healthy adult subjects in an open-label, randomized sequence, 4-period, crossover trial. Each subject received a single 300-mg dose of lamivudine oral solution alone or coadministered with a single dose of 3.2 grams, 10.2 grams, or 13.4 grams of sorbitol in solution. Coadministration of lamivudine with sorbitol resulted in dose-dependent decreases of 20%, 39%, and 44% in the AUC(0-24), 14%, 32%, and 36% in the AUC(∞), and 28%, 52%, and 55% in the Cmax of lamivudine.

Trimethoprim/Sulfamethoxazole: Lamivudine and trimethoprim/sulfamethoxazole (TMP/SMX) were coadministered to 14 HIV-1-positive subjects in a single-center, open-label, randomized, crossover trial. Each subject received treatment with a single 300-mg dose of lamivudine and TMP 160 mg/SMX 800 mg once a day for 5 days with concomitant administration of lamivudine 300 mg with the fifth dose in a crossover design. Coadministration of TMP/SMX with lamivudine resulted in an increase of 43% ± 23% (mean ± SD) in lamivudine AUC∞, a decrease of 29% ± 13% in lamivudine oral clearance, and a decrease of 30% ± 36% in lamivudine renal clearance. The pharmacokinetic properties of TMP and SMX were not altered by coadministration with lamivudine.

Zidovudine: No clinically significant alterations in lamivudine or zidovudine pharmacokinetics were observed in 12 asymptomatic HIV-1-infected adult subjects given a singledose of zidovudine (200 mg) in combination with multiple doses of lamivudine (300 mg every 12 hours).

12.4 Microbiology

Mechanism of Action:
Lamivudine is a synthetic nucleoside analogue. Intracellularly, lamivudine is phosphorylated to its active 5’-triphosphate metabolite, lamivudine triphosphate (3TC-TP). The principal mode of action of 3TC-TP is inhibition of the RNA- and DNA-dependent polymerase activities of HBV reverse transcriptase (rt) via DNA chain termination after incorporation of the nucleotide analogue.

Antiviral Activity:
Activity of lamivudine against HBV in cell culture was assessed in HBV DNA-transfected
2.2.15 cells, HB611 cells, and infected human primary hepatocytes. EC50 values (the concentration of drug needed to reduce the level of extracellular HBV DNA by 50%) varied from 0.01 microM (2.3 ng per mL) to 5.6 microM (1.3 mcg per mL) depending upon the duration of exposure of cells to lamivudine, the cell model system, and the protocol used. See the EPIVIR prescribing information for information regarding activity of lamivudine against HIV.

The anti-HBV activity of lamivudine in combination with tenofovir in cell culture was not antagonistic.

Resistance:
Lamivudine-resistant isolates were identified in subjects with virologic breakthrough, defined when using solution hybridization assay as the detection of HBV DNA in serum on 2 or more occasions after failing to detect HBV DNA on 2 or more occasions and defined when using PCR assay as a greater than 1 log10 (10-fold) increase in serum HBV DNA from nadir during treatment in a subject who had an initial virologic response.

Lamivudine-resistant HBV isolates develop rtM204V/I substitutions in the YMDD motif of the catalytic domain of the viral reverse transcriptase. rtM204V/I substitutions are frequently accompanied by other substitutions (rtV173L, rtL180M) which enhance the level of lamivudine resistance or act as compensatory substitutions improving replication efficiency. Other substitutions detected in lamivudine-resistant HBV isolates include rtL80I and rtA181T.

In 4 controlled clinical trials in adults with HBeAg-positive chronic hepatitis B virus infection (CHB), YMDD-mutant HBV was detected in 81 of 335 subjects receiving ZEEFIX 100 mg once daily for 52 weeks. The prevalence of YMDD substitutions was less than 10% in each of these trials for subjects studied at 24 weeks and increased to an average of 24% (range in 4 trials: 16% to 32%) at 52 weeks. In limited data from a long-term follow-up trial in subjects who continued 100 mg per day ZEEFIX after one of these trials, YMDD substitutions further increased from 18% (10 of 57) at 1 year to 41% (20 of 49), 53% (27 of 51), and 69% (31 of 45) after 2, 3, and 4 years of treatment, respectively. Over the 5-year treatment period, the proportion of subjects who developed YMDD-mutant HBV at any time was 69% (40 of 58). In a controlled trial, treatment-naive subjects with HBeAg-positive CHB were treated with ZEFFIX or ZEFFIX plus adefovir dipivoxil combination therapy. Following 104 weeks of therapy, YMDD-mutant HBV was detected in 7 of 40 (18%) subjects receiving combination therapy compared with 15 of 35 (43%) subjects receiving therapy with only ZEFFIX. In another controlled trial, combination therapy was evaluated in adult subjects with HBeAg-positive CHB who had YMDD-mutant HBV and diminished clinical and virologic response to ZEFFIX. Following 52 weeks of ZEFFIX plus adefovir dipivoxil combination therapy (n = 46) or therapy with only ZEFFIX (n = 49), YMDD-mutant HBV was detected less frequently in subjects receiving combination therapy, 62% versus 96%.

A published trial suggested that the rates of lamivudine resistance in subjects treated for HBeAg-negative CHB appear to be more variable (0% to 27% at 1 year and 10% to 56% at 2 years).

Pediatric Subjects: In a controlled trial in pediatric subjects, YMDD-mutant HBV was detected in 31 of 166 (19%) subjects receiving ZEFFIX for 52 weeks. For a subgroup that remained on therapy with ZEFFIX in a follow-up trial, YMDD substitutions increased from
24% (29 of 121) at 12 months to 59% (68 of 115) at 24 months and 64% (66 of 103) at 36 months of treatment with ZEFFIX.

Cross-Resistance:
HBV containing lamivudine resistance-associated substitutions (rtL180M, rtM204I, rtM204V, rtL180M, rtV173L, and rtL180M and rtM204V) retain susceptibility to adefovir dipivoxil but have reduced susceptibility to entecavir (greater than 30 fold) and telbivudine (greater than 100 fold). The lamivudine resistance-associated substitution rtA181T results in diminished response to adefovir and telbivudine. Similarly, HBV with entecavir resistance-associated substitutions (rtI169T/rtM250V and rtT184G/rtS202I) have greater than 1,000-fold reductions in susceptibility to lamivudine.

13. NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis:
Long-term carcinogenicity studies with lamivudine in mice and rats showed no evidence of carcinogenic potential at exposures up to 34 times (mice) and 113 and 187 times (male and female rats, respectively) those observed in humans at the recommended therapeutic dose for chronic hepatitis B.

Mutagenesis:
Lamivudine was mutagenic in an L5178Y mouse lymphoma assay and clastogenic in a cytogenetic assay using cultured human lymphocytes. Lamivudine was not mutagenic in a microbial mutagenicity assay, in an in vitro cell transformation assay, in a rat micronucleus test, in a rat bone marrow cytogenetic assay, and in an assay for unscheduled DNA synthesis in rat liver.

Impairment of Fertility:

LAMIVUDINE DID NOT AFFECT MALE OR FEMALE FERTILITY IN RATS AT ORAL DOSES UP TO 4,000 MG PER KG PER DAY, ASSOCIATED WITH CONCENTRATIONS APPROXIMATELY 70 TIMES (MALE) OR 104 TIMES (FEMALES) HIGHER THAN THE CONCENTRATIONS (CMAX) IN HUMANS AT THE DOSE OF 100 MG [SEE USE IN SPECIFIC POPULATIONS (8.1)]

14. CLINICAL STUDIES
14.1 Adult Subjects
The safety and efficacy of ZEFFIX 100 mg once daily versus placebo were evaluated in 3 controlled trials in subjects with compensated chronic hepatitis B virus infection. All subjects were aged 16 years or older and had chronic hepatitis B virus infection (serum HBsAg-positive for at least 6 months) accompanied by evidence of HBV replication (serum HBeAg-positive and positive for serum HBV DNA) and persistently elevated ALT levels and/or chronic inflammation on liver biopsy compatible with a diagnosis of chronic viral hepatitis. The results of these trials are summarized below.

- Trial 1 was a randomized, double-blind trial of ZEFFIX 100 mg once daily versus placebo for 52 weeks followed by a 16-week no-treatment period in 141 treatment-naive US subjects.
- Trial 2 was a randomized, double-blind, 3-arm trial that compared ZEFFIX 25 mg once
daily versus ZEFFIX 100 mg once daily versus placebo for 52 weeks in 358 Asian subjects.

 Trial 3 was a randomized, partially-blind trial conducted primarily in North America and Europe in 238 subjects who had ongoing evidence of active chronic hepatitis B despite previous treatment with interferon alfa. The trial compared ZEFFIX 100 mg once daily for 52 weeks, followed by either ZEFFIX 100 mg or matching placebo once daily for 16 weeks (Arm 1), versus placebo once daily for 68 weeks (Arm 2).

Principal endpoint comparisons for the histologic and serologic outcomes in subjects receiving ZEFFIX (100 mg daily) or placebo in these trials are shown in the following tables.

Table 7: Histologic Response at Week 52 among Adult Subjects Receiving ZEFFIX 100 mg Once Daily or Placebo

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Trial 1</th>
<th></th>
<th>Trial 2</th>
<th></th>
<th>Trial 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEFFIX (n = 62)</td>
<td></td>
<td>Placebo (n = 63)</td>
<td></td>
<td>Placebo (n = 131)</td>
<td></td>
<td>Placebo (n = 110)</td>
</tr>
<tr>
<td>Improvementa</td>
<td>55%</td>
<td>25%</td>
<td>56%</td>
<td>26%</td>
<td>56%</td>
<td>26%</td>
</tr>
<tr>
<td>No Improvement</td>
<td>27%</td>
<td>59%</td>
<td>36%</td>
<td>62%</td>
<td>25%</td>
<td>54%</td>
</tr>
<tr>
<td>Missing Data</td>
<td>18%</td>
<td>16%</td>
<td>8%</td>
<td>12%</td>
<td>19%</td>
<td>20%</td>
</tr>
</tbody>
</table>

*a Improvement was defined as a greater than or equal to 2-point decrease in the Knodell Histologic Activity Index (HAI) at Week 52 compared with pretreatment HAI. subjects with missing data at baseline were excluded.

Table 8: HBeAg Seroconvertersa at Week 52 among Adult Subjects Receiving ZEFFIX 100 mg Once Daily or Placebo

<table>
<thead>
<tr>
<th>Seroconversion</th>
<th>Trial 1</th>
<th></th>
<th>Trial 2</th>
<th></th>
<th>Trial 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEFFIX (n = 63)</td>
<td></td>
<td>Placebo (n = 69)</td>
<td></td>
<td>Placebo (n = 140)</td>
<td></td>
<td>Placebo (n = 108)</td>
</tr>
<tr>
<td>Seroconverters</td>
<td>17%</td>
<td>6%</td>
<td>16%</td>
<td>4%</td>
<td>15%</td>
<td>13%</td>
</tr>
</tbody>
</table>

*aThree-component seroconversion was defined as Week 52 values showing loss of HBeAg, gain of HBeAb, and reduction of HBV DNA to below the solution-hybridization assay limit. Subjects with negative baseline HBeAg or HBV DNA assay were excluded from the analysis.

Normalization of serum ALT levels was more frequent with treatment of ZEFFIX compared with placebo in Trials 1, 2 and 3.

The majority of subjects treated with ZEFFIX showed a decrease of HBV DNA to below the assay limit early in the course of therapy. However, reappearance of assay-detectable HBV DNA during treatment with ZEFFIX was observed in approximately one-third of subjects after this initial response.

14.2 Pediatric Subjects

The safety and efficacy of ZEFFIX were evaluated in a double-blind clinical trial in 286 subjects aged 2 to 17 years, who were randomized (2:1) to receive 52 weeks of ZEFFIX (3 mg per kg once daily to a maximum of 100 mg once daily) or placebo. All subjects had
compensated chronic hepatitis B accompanied by evidence of hepatitis B virus replication (positive serum HBeAg and positive for serum HBV DNA by a research branched-chain DNA assay) and persistently elevated serum ALT levels. The combination of loss of HBeAg and reduction of HBV DNA to below the assay limit of the research assay, evaluated at Week 52, was observed in 23% of subjects treated with ZEFFIX and 13% of placebo-treated subjects. Normalization of serum ALT was achieved and maintained to Week 52 more frequently in subjects treated with Zeffix compared with placebo (55% versus 13%). As in the adult controlled trials, most subjects treated with ZEFFIX had decreases in HBV DNA below the assay limit early in treatment, but about one-third of subjects with this initial response had reappearance of assay-detectable HBV DNA during treatment. Adolescents (aged 13 to 17 years) showed less evidence of treatment effect than younger pediatric subjects.

HOW SUPPLIED/STORAGE AND HANDLING

ZEFFIX tablets, 100 mg, are butterscotch-colored, film-coated, biconvex, capsule-shaped tablets engraved with “GX CG5” on one side.

Boxes containing 28 or 84 film-coated tablets in double foil blisters, laminated with polyvinyl chloride.

Do not store above 30ºC.

ZEFFIX oral solution, a clear, colorless to pale yellow in color, with the odour of fruit

Cartons containing 240 ml lamivudine oral solution in an opaque, white, high-density polyethylene (HDPE) bottle with a polypropylene child resistant closure. The pack also includes a polyethylene syringe-adapter, and a 10 ml oral dosing syringe comprised of a polypropylene barrel (with ml graduations) and a polyethylene plunger.

Do not store above 25°C

After first opening: use within 1 month.

Shelf life
The expiry date of the product is indicated on the label and packaging

Manufacturer
ZEffix Tablets:
GlaxoSmithKline Pharmaceuticals S.A., Poznan, Poland.
ZEffix Oral Solution:
GlaxoSmithKline Inc., Mississauga, Canada.

License Holder and Importer
GlaxoSmithKline (Israel) Ltd., 25 Basel St., Petach Tikva.

License Number
ZEffix Tablets:
114-11-29544

Page 19 of 20