The format was approved by the Israeli Ministry of Health in March 2015

1. NAME OF THE MEDICINAL PRODUCT

Coralan 5 mg film-coated tablets
Coralan 7.5 mg film-coated tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

One film-coated tablet of Coralan 5 contains 5 mg ivabradine (equivalent to 5.390 mg ivabradine as hydrochloride).
One film-coated tablet of Coralan 7.5 contains 7.5 mg ivabradine (equivalent to 8.085 mg ivabradine as hydrochloride).

Excipient with known effect:
Coralan 5mg: 63.91 mg lactose monohydrate
Coralan 7.5mg: 61.215 mg lactose monohydrate

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Film-coated tablet.

Coralan 5mg: Salmon-coloured, oblong, film-coated tablet scored on both sides, engraved with “5” on one face and ⚭ on the other face.

The tablet can be divided into equal halves.

Coralan 7.5mg: Salmon-coloured, triangular, film-coated tablet, engraved with “7.5” on one face and ⚭ on the other face.

4. Clinical particulars

4.1 Therapeutic indications

Symptomatic treatment of chronic stable angina pectoris in patients with normal sinus rhythm, who have a contra-indication or intolerance for beta-blockers.

Treatment of chronic heart failure
Ivabradine is indicated in chronic heart failure NYHA II to IV class with systolic dysfunction, in patients in sinus rhythm and whose heart rate is ≥ 75 bpm, in combination with standard therapy including beta-blocker therapy or when beta-blocker therapy is contraindicated or not tolerated. (see section 5.1)

4.2 Posology and method of administration

Posology
For the different doses, film-coated tablets containing 5 mg and 7.5 mg ivabradine are available.

Symptomatic treatment of chronic stable angina pectoris
It is recommended that the decision to initiate or titrate treatment takes place with the availability of serial heart rate measurements, ECG or ambulatory 24-hour monitoring.
The starting dose of ivabradine should not exceed 5 mg twice daily in patients aged below 75 years. After three to four weeks of treatment, if the patient is still symptomatic, if the initial dose is well tolerated and if resting heart rate remains above 60 bpm, the dose may be increased to the next higher dose in patients receiving 2.5 mg twice daily or 5 mg twice daily. The maintenance dose should not exceed 7.5 mg twice daily.
If there is no improvement in symptoms of angina within 3 months after start of treatment, treatment of ivabradine should be discontinued.
In addition, discontinuation of treatment should be considered if there is only limited symptomatic response and when there is no clinically relevant reduction in resting heart rate within three months.
If, during treatment, heart rate decreases below 50 beats per minute (bpm) at rest or the patient experiences symptoms related to bradycardia such as dizziness, fatigue or hypotension, the dose must be titrated downward including the lowest dose of 2.5 mg twice daily (one half 5 mg tablet twice daily). After dose reduction, heart rate should be monitored (see section 4.4). Treatment must be discontinued if heart rate remains below 50 bpm or symptoms of bradycardia persist despite dose reduction.

Treatment of chronic heart failure
The treatment has to be initiated only in patient with stable heart failure. It is recommended that the treating physician should be experienced in the management of chronic heart failure.
The usual recommended starting dose of ivabradine is 5 mg twice daily. After two weeks of treatment, the dose can be increased to 7.5 mg twice daily if resting heart rate is persistently above 60 bpm or decreased to 2.5 mg twice daily (one half 5 mg tablet twice daily) if resting heart rate is persistently below 50 bpm or in case of symptoms related to bradycardia such as dizziness, fatigue or hypotension. If heart rate is between 50 and 60 bpm, the dose of 5 mg twice daily should be maintained.
If during treatment, heart rate decreases persistently below 50 beats per minute (bpm) at rest or the patient experiences symptoms related to bradycardia, the dose must be titrated downward to the next lower dose in patients receiving 7.5 mg twice daily or 5 mg twice daily. If heart rate increases persistently above 60 beats per minute at rest, the dose can be up titrated to the next upper dose in patients receiving 2.5 mg twice daily or 5 mg twice daily. Treatment must be discontinued if heart rate remains below 50 bpm or symptoms of bradycardia persist (see section 4.4).

Special population

Older people
In patients aged 75 years or more, a lower starting dose should be considered for these patients (2.5 mg twice daily i.e. one half 5 mg tablet twice daily) before up-titration if necessary.

Patients with Renal impairment
No dose adjustment is required in patients with renal insufficiency and creatinine clearance above 15 ml/min (see section 5.2).
No data are available in patients with creatinine clearance below 15 ml/min. Ivabradine should therefore be used with precaution in this population.
Patients with Hepatic impairment

No dose adjustment is required in patients with mild hepatic impairment. Caution should be exercised when using ivabradine in patients with moderate hepatic impairment. Ivabradine is contra-indicated for use in patients with severe hepatic insufficiency, since it has not been studied in this population and a large increase in systemic exposure is anticipated (see sections 4.3 and 5.2).

Paediatric population

The safety and efficacy of ivabradine in children aged below 18 years have not yet been established. No data are available.

Method of administration

Tablets must be taken orally twice daily, i.e. once in the morning and once in the evening during meals (see section 5.2).

4.3 Contraindications

- Hypersensitivity to the active substance or to any of the excipients (listed in section 6.1)
- Resting heart rate below 70 beats per minute prior to treatment
- Cardiogenic shock
- Acute myocardial infarction
- Severe hypotension (< 90/50 mmHg)
- Severe hepatic insufficiency
- Sick sinus syndrome
- Sino-atrial block
- Unstable or acute Heart failure
- Pacemaker dependent (heart rate imposed exclusively by the pacemaker)
- Unstable angina
- AV-block of 3rd degree
- Combination with strong cytochrome P450 3A4 inhibitors such as azole antifungals (ketoconazole, itraconazole), macrolide antibiotics (clarithromycin, erythromycin per os, josamycin, telithromycin), HIV protease inhibitors (nelfinavir, ritonavir) and nefazodone (see sections 4.5 and 5.2)
- Combination with verapamil or diltiazem which are moderate CYP3A4 inhibitors with heart rate reducing properties (see section 4.5)
- Pregnancy, lactation and women of child-bearing potential not using appropriate contraceptive measures (see section 4.6)

4.4 Special warnings and precautions for use

Special warnings

Lack of benefit on clinical outcomes in patients with symptomatic chronic stable angina pectoris

Ivabradine is indicated only for symptomatic treatment of chronic stable angina pectoris because ivabradine has no benefits on cardiovascular outcomes (e.g. myocardial infarction or cardiovascular death) (see section 5.1).
Measurement of heart rate
Given that the heart rate may fluctuate considerably over time, serial heart rate measurements, ECG or ambulatory 24-hour monitoring should be considered when determining resting heart rate before initiation of ivabradine treatment and in patients on treatment with ivabradine when titration is considered. This also applies to patients with a low heart rate, in particular when heart rate decreases below 50 bpm, or after dose reduction (see section 4.2).

Cardiac arrhythmias
Ivabradine is not effective in the treatment or prevention of cardiac arrhythmias and likely loses its efficacy when a tachyarrhythmia occurs (e.g. ventricular or supraventricular tachycardia). Ivabradine is therefore not recommended in patients with atrial fibrillation or other cardiac arrhythmias that interfere with sinus node function.

In patients treated with ivabradine the risk of developing atrial fibrillation is increased (see section 4.8). Atrial fibrillation has been more common in patients using concomitantly amiodarone or potent class I anti-arrhythmics.

It is recommended to regularly clinically monitor ivabradine treated patients for the occurrence of atrial fibrillation (sustained or paroxysmal), which should also include ECG monitoring if clinically indicated (e.g. in case of exacerbated angina, palpitations, irregular pulse).

Patients should be informed of signs and symptoms of atrial fibrillation and be advised to contact their physician if these occur.

If atrial fibrillation develops during treatment, the balance of benefits and risks of continued ivabradine treatment should be carefully reconsidered.

Chronic heart failure patients with intraventricular conduction defects (bundle branch block left, bundle branch block right) and ventricular dyssynchrony should be monitored closely.

Use in patients with AV-block of 2nd degree
Ivabradine is not recommended in patients with AV-block of 2nd degree.

Use in patients with a low heart rate
Ivabradine must not be initiated in patients with a pretreatment resting heart rate below 70 beats per minute (see sections 4.3 and 4.5).

If, during treatment, resting heart rate decreases persistently below 50 bpm or the patient experiences symptoms related to bradycardia such as dizziness, fatigue or hypotension, the dose must be titrated downward or treatment discontinued if heart rate below 50 bpm or symptoms of bradycardia persist (see section 4.2).

Combination with calcium channel blockers
Concomitant use of ivabradine with heart rate reducing calcium channel blockers such as verapamil or diltiazem is contraindicated (see sections 4.3 and 4.5). No safety issue has been raised on the combination of ivabradine with nitrates and dihydropyridine calcium channel blockers such as amlodipine. Additional efficacy of ivabradine in combination with dihydropyridine calcium channel blockers has not been established (see section 5.1).

Chronic heart failure
Heart failure must be stable before considering ivabradine treatment. Ivabradine should be used with caution in heart failure patients with NYHA functional classification IV due to limited amount of data in this population.
Stroke
The use of ivabradine is not recommended immediately after a stroke since no data is available in these situations.

Visual function
Ivabradine influences on retinal function (see section 5.1). To date, there is no evidence of a toxic effect of ivabradine on the retina, but the effects of long-term ivabradine treatment beyond one year on retinal function are currently not known. Cessation of treatment should be considered if any unexpected deterioration in visual function occurs. Caution should be exercised in patients with retinitis pigmentosa.

Precautions for use

Patients with hypotension
Limited data are available in patients with mild to moderate hypotension, and ivabradine should therefore be used with caution in these patients. Ivabradine is contra-indicated in patients with severe hypotension (blood pressure < 90/50 mmHg) (see section 4.3).

Atrial fibrillation - Cardiac arrhythmias
There is no evidence of risk of (excessive) bradycardia on return to sinus rhythm when pharmacological cardioversion is initiated in patients treated with ivabradine. However, in the absence of extensive data, non urgent DC-cardioversion should be considered 24 hours after the last dose of ivabradine.

Use in patients with congenital QT syndrome or treated with QT prolonging medicinal products
The use of ivabradine in patients with congenital QT syndrome or treated with QT prolonging medicinal products should be avoided (see section 4.5). If the combination appears necessary, close cardiac monitoring is needed. Heart rate reduction, as caused by ivabradine, may exacerbate QT prolongation, which may give rise to severe arrhythmias, in particular Torsade de pointes.

Hypertensive patients requiring blood pressure treatment modifications.
In the SHIFT trial more patients experienced episodes of increased blood pressure while treated with ivabradine (7.1%) compared to patients treated with placebo (6.1%). These episodes occurred most frequently shortly after blood pressure treatment was modified, were transient, and did not affect the treatment effect of ivabradine. When treatment modifications are made in chronic heart failure patients treated with ivabradine blood pressure should be monitored at an appropriate interval (see section 4.8).

Excipients
Since tablets contain lactose, patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.

4.5 Interaction with other medicinal products and other forms of interaction

Pharmacodynamic interactions
Concomitant use not recommended
QT prolonging medicinal products
- Cardiovascular QT prolonging medicinal products (e.g. quinidine, disopyramide, bepridil, sotalol, ibutilide, amiodarone).
- Non cardiovascular QT prolonging medicinal products (e.g. pimozide, ziprasidone, sertindole, mefloquine, halofantrine, pentamidine, cisapride, intravenous erythromycin). The concomitant use of cardiovascular and non cardiovascular QT prolonging medicinal products with ivabradine should be avoided since QT prolongation may be exacerbated by heart rate reduction. If the combination appears necessary, close cardiac monitoring is needed (see section 4.4).

Concomitant use with precaution

Potassium-depleting diuretics (thiazide diuretics and loop diuretics): hypokalemia can increase the risk of arrhythmia. As ivabradine may cause bradycardia, the resulting combination of hypokalemia and bradycardia is a predisposing factor to the onset of severe arrhythmias, especially in patients with long QT syndrome, whether congenital or substance-induced.

Pharmacokinetic interactions

Cytochrome P450 3A4 (CYP3A4)

Ivabradine is metabolised by CYP3A4 only and it is a very weak inhibitor of this cytochrome. Ivabradine was shown not to influence the metabolism and plasma concentrations of other CYP3A4 substrates (mild, moderate and strong inhibitors). CYP3A4 inhibitors and inducers are liable to interact with ivabradine and influence its metabolism and pharmacokinetics to a clinically significant extent. Drug-drug interaction studies have established that CYP3A4 inhibitors increase ivabradine plasma concentrations, while inducers decrease them. Increased plasma concentrations of ivabradine may be associated with the risk of excessive bradycardia (see section 4.4).

Contra-indication of concomitant use

The concomitant use of potent CYP3A4 inhibitors such as azole antifungals (ketoconazole, itraconazole), macrolide antibiotics (clarithromycin, erythromycin per os, josamycin, telithromycin), HIV protease inhibitors (nelfinavir, ritonavir) and nefazodone is contra-indicated (see section 4.3). The potent CYP3A4 inhibitors ketoconazole (200 mg once daily) and josamycin (1 g twice daily) increased ivabradine mean plasma exposure by 7 to 8 fold.

Moderate CYP3A4 inhibitors: specific interaction studies in healthy volunteers and patients have shown that the combination of ivabradine with the heart rate reducing agents diltiazem or verapamil resulted in an increase in ivabradine exposure (2 to 3 fold increase in AUC) and an additional heart rate reduction of 5 bpm. The concomitant use of ivabradine with these medicinal products is contraindicated (see section 4.3).

Concomitant use not recommended

Grapefruit juice: ivabradine exposure was increased by 2-fold following the co-administration with grapefruit juice. Therefore the intake of grapefruit juice should be avoided.

Concomitant use with precautions

- Moderate CYP3A4 inhibitors: the concomitant use of ivabradine with other moderate CYP3A4 inhibitors (e.g. fluconazole) may be considered at the starting dose of 2.5 mg twice daily and if resting heart rate is above 70 bpm, with monitoring of heart rate.
- CYP3A4 inducers: CYP3A4 inducers (e.g. rifampicin, barbiturates, phenytoin, Hypericum perforatum [St John’s Wort]) may decrease ivabradine exposure and activity. The concomitant use of CYP3A4 inducing medicinal products may require an adjustment of the dose of ivabradine. The combination of ivabradine 10 mg twice daily with St John’s Wort was shown to reduce ivabradine AUC by half. The intake of St John’s Wort should be restricted during the treatment with ivabradine.
Other concomitant use
Specific drug-drug interaction studies have shown no clinically significant effect of the following medicinal products on pharmacokinetics and pharmacodynamics of ivabradine: proton pump inhibitors (omeprazole, lansoprazole), sildenafil, HMG CoA reductase inhibitors (simvastatin), dihydropyridine calcium channel blockers (amlodipine, lacidipine), digoxin and warfarin. In addition there was no clinically significant effect of ivabradine on the pharmacokinetics of simvastatin, amlodipine, lacidipine, on the pharmacokinetics and pharmacodynamics of digoxin, warfarin and on the pharmacodynamics of aspirin.
In pivotal phase III clinical trials the following medicinal products were routinely combined with ivabradine with no evidence of safety concerns: angiotensin converting enzyme inhibitors, angiotensin II antagonists, beta-blockers, diuretics, anti-aldosterone agents, short and long acting nitrates, HMG CoA reductase inhibitors, fibrates, proton pump inhibitors, oral antidiabetics, aspirin and other anti-platelet medicinal products.

Paediatric population
Interaction studies have only been performed in adults.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential
Women of child-bearing potential should use appropriate contraceptive measures during treatment (see section 4.3).

Pregnancy
There are no or limited amount of data from the use of ivabradine in pregnant women. Studies in animals have shown reproductive toxicity. These studies have shown embryotoxic and teratogenic effects (see section 5.3). The potential risk for humans is unknown. Therefore, ivabradine is contra-indicated during pregnancy (see section 4.3).

Breast-feeding
Animal studies indicate that ivabradine is excreted in milk. Therefore, ivabradine is contra-indicated during breast-feeding (see section 4.3). Women that need treatment with ivabradine should stop breast-feeding, and choose for another way of feeding their child.

Fertility
Studies in rats have shown no effect on fertility in males and females (see section 5.3).

4.7 Effects on ability to drive and use machines
A specific study to assess the possible influence of ivabradine on driving performance has been performed in healthy volunteers where no alteration of the driving performance was evidenced. However, in post-marketing experience, cases of impaired driving ability due to visual symptoms have been reported. Ivabradine may cause transient luminous phenomena consisting mainly of phosphenes (see section 4.8). The possible occurrence of such luminous phenomena should be taken into account when driving or using machines in situations where sudden variations in light intensity may occur, especially when driving at night. Ivabradine has no influence on the ability to use machines.

4.8 Undesirable effects
Summary of the safety profile
Ivabradine has been studied in clinical trials involving nearly 45,000 participants.
The most common adverse reactions with ivabradine, luminous phenomena (phosphenes) and bradycardia, are dose dependent and related to the pharmacological effect of the medicinal product.

Tabulated list of adverse reactions

The following adverse reactions have been reported during clinical trials and are ranked using the following frequency: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000); not known (cannot be estimated from the available data).

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Frequency</th>
<th>Preferred Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Uncommon</td>
<td>Eosinophilia</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Uncommon</td>
<td>Hyperuricaemia</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Common</td>
<td>Headache, generally during the first month of treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dizziness, possibly related to bradycardia</td>
</tr>
<tr>
<td></td>
<td>Uncommon*</td>
<td>Syncope, possibly related to bradycardia</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Very common</td>
<td>Luminous phenomena (phosphenes)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Blurred vision</td>
</tr>
<tr>
<td></td>
<td>Uncommon*</td>
<td>Diplopia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visual impairment</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Uncommon</td>
<td>Vertigo</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Common</td>
<td>Bradycardia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AV 1(^{st}) degree block (ECG prolonged PQ interval)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ventricular extrasystoles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atrial fibrillation</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Palpitations, supraventricular extrasystoles</td>
</tr>
<tr>
<td></td>
<td>Very rare</td>
<td>AV 2(^{nd}) degree block, AV 3(^{rd}) degree block</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sick sinus syndrome</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Common</td>
<td>Uncontrolled blood pressure</td>
</tr>
<tr>
<td></td>
<td>Uncommon*</td>
<td>Hypotension, possibly related to bradycardia</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Uncommon</td>
<td>Dyspnoea</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Uncommon</td>
<td>Nausea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constipation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diarrhoea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abdominal pain*</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Uncommon*</td>
<td>Angioedema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rash</td>
</tr>
<tr>
<td></td>
<td>Rare*</td>
<td>Erythema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pruritus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urticaria</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Uncommon</td>
<td>Muscle cramps</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Uncommon*</td>
<td>Asthenia, possibly related to bradycardia</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fatigue, possibly related to bradycardia</td>
</tr>
<tr>
<td>Rare*</td>
<td>Rare*</td>
<td>Malaise, possibly related to bradycardia</td>
</tr>
<tr>
<td>Investigations</td>
<td>Uncommon</td>
<td>Elevated creatinine in blood</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECG prolonged QT interval</td>
</tr>
</tbody>
</table>

* Frequency calculated from clinical trials for adverse events detected from spontaneous report

Description of selected adverse reactions

Luminous phenomena (phosphenes) were reported by 14.5% of patients, described as a transient enhanced brightness in a limited area of the visual field. They are usually triggered by sudden variations in light intensity. Phosphenes may also be described as a halo, image decomposition (stroboscopic or kaleidoscopic effects), coloured bright lights, or multiple image (retinal persistency). The onset of phosphenes is generally within the first two months of treatment after which they may occur repeatedly. Phosphenes were generally reported to be of mild to moderate intensity. All phosphenes resolved during or after treatment, of which a majority (77.5%) resolved during treatment. Fewer than 1% of patients changed their daily routine or discontinued the treatment in relation with phosphenes.

Bradycardia was reported by 3.3% of patients particularly within the first 2 to 3 months of treatment initiation. 0.5% of patients experienced a severe bradycardia below or equal to 40 bpm.

In the SIGNIFY study atrial fibrillation was observed in 5.3% of patients taking ivabradine compared to 3.8% in the placebo group. In a pooled analysis of all the Phase II/III double blind controlled clinical trials with a duration of at least 3 months including more than 40,000 patients, the incidence of atrial fibrillation was 4.86% in ivabradine treated patients compared to 4.08% in controls, corresponding to a hazard ratio of 1.26, 95% CI [1.15-1.39].

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions to the Ministry of Health according to the National Regulation by using an online form (http://forms.gov.il/globaldata/getsequence/getsequence.aspx?formType=AdversEffectMedic@moh.health.gov.il) or by email (adr@MOH.HEALTH.GOV.IL).

4.9 Overdose

Symptoms

Overdose may lead to severe and prolonged bradycardia (see section 4.8).

Management

Severe bradycardia should be treated symptomatically in a specialised environment. In the event of bradycardia with poor haemodynamic tolerance, symptomatic treatment including intravenous beta-stimulating medicinal products such as isoprenaline may be considered. Temporary cardiac electrical pacing may be instituted if required.
5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Cardiac therapy, other cardiac preparations, ATC code: C01EB17.

Mechanism of action

Ivabradine is a pure heart rate lowering agent, acting by selective and specific inhibition of the cardiac pacemaker I_f current that controls the spontaneous diastolic depolarisation in the sinus node and regulates heart rate. The cardiac effects are specific to the sinus node with no effect on intra-atrial, atrioventricular or intraventricular conduction times, nor on myocardial contractility or ventricular repolarisation.

Ivabradine can interact also with the retinal current I_h which closely resembles cardiac I_f. It participates in the temporal resolution of the visual system, by curtailing the retinal response to bright light stimuli. Under triggering circumstances (e.g. rapid changes in luminosity), partial inhibition of I_h by ivabradine underlies the luminous phenomena that may be occasionally experienced by patients. Luminous phenomena (phosphenes) are described as a transient enhanced brightness in a limited area of the visual field (see section 4.8).

Pharmacodynamic effects

The main pharmacodynamic property of ivabradine in humans is a specific dose dependent reduction in heart rate. Analysis of heart rate reduction with doses up to 20 mg twice daily indicates a trend towards a plateau effect which is consistent with a reduced risk of severe bradycardia below 40 bpm (see section 4.8). At usual recommended doses, heart rate reduction is approximately 10 bpm at rest and during exercise. This leads to a reduction in cardiac workload and myocardial oxygen consumption. Ivabradine does not influence intracardiac conduction, contractility (no negative inotropic effect) or ventricular repolarisation:

- in clinical electrophysiology studies, ivabradine had no effect on atrioventricular or intraventricular conduction times or corrected QT intervals;
- in patients with left ventricular dysfunction (left ventricular ejection fraction (LVEF) between 30 and 45%), ivabradine did not have any deleterious influence on LVEF.

Clinical efficacy and safety

The antianginal and anti-ischaemic efficacy of ivabradine was studied in five double-blind randomised trials (three versus placebo, and one each versus atenolol and amlodipine). These trials included a total of 4,111 patients with chronic stable angina pectoris, of whom 2,617 received ivabradine.

Ivabradine 5 mg twice daily was shown to be effective on exercise test parameters within 3 to 4 weeks of treatment. Efficacy was confirmed with 7.5 mg twice daily. In particular, the additional benefit over 5 mg twice daily was established in a reference-controlled study versus atenolol: total exercise duration at trough was increased by about 1 minute after one month of treatment with 5 mg twice daily and further improved by almost 25 seconds after an additional 3-month period with forced titration to 7.5 mg twice daily. In this study, the antianginal and anti-ischaemic benefits of ivabradine were confirmed in patients aged 65 years or more. The efficacy of 5 and 7.5 mg twice daily was consistent across studies on exercise test parameters (total exercise duration, time to limiting angina, time to angina onset and time to 1 mm ST segment depression) and was associated with a decrease of about 70%
in the rate of angina attacks. The twice-daily dosing regimen of ivabradine gave uniform efficacy over 24 hours.

In a 889-patients randomised placebo-controlled study, ivabradine given on top of atenolol 50 mg o.d. showed additional efficacy on all ETT parameters at the trough of drug activity (12 hours after oral intake).

In a 725-patients randomised placebo-controlled study, ivabradine did not show additional efficacy on top of amlodipine at the trough of drug activity (12 hours after oral intake) while an additional efficacy was shown at peak (3-4 hours after oral intake).

Ivabradine efficacy was fully maintained throughout the 3- or 4-month treatment periods in the efficacy trials. There was no evidence of pharmacological tolerance (loss of efficacy) developing during treatment nor of rebound phenomena after abrupt treatment discontinuation. The antianginal and anti-ischaemic effects of ivabradine were associated with dose-dependent reductions in heart rate and with a significant decrease in rate pressure product (heart rate x systolic blood pressure) at rest and during exercise. The effects on blood pressure and peripheral vascular resistance were minor and not clinically significant.

A sustained reduction of heart rate was demonstrated in patients treated with ivabradine for at least one year (n = 713). No influence on glucose or lipid metabolism was observed.

The antianginal and anti-ischaemic efficacy of ivabradine was preserved in diabetic patients (n = 457) with a similar safety profile as compared to the overall population.

A large outcome study, BEAUTIFUL, was performed in 10917 patients with coronary artery disease and left ventricular dysfunction (LVEF<40%) on top of optimal background therapy with 86.9% of patients receiving beta-blockers. The main efficacy criterion was the composite of cardiovascular death, hospitalization for acute MI or hospitalization for new onset or worsening heart failure. The study showed no difference in the rate of the primary composite outcome in the ivabradine group by comparison to the placebo group (relative risk ivabradine/placebo 1.00, p=0.945).

In a post-hoc subgroup of patients with symptomatic angina at randomisation (n=1507), no safety signal was identified regarding cardiovascular death, hospitalization for acute MI or heart failure (ivabradine 12.0% versus placebo 15.5%, p=0.05).

A large outcome study, SIGNIFY, was performed in 19102 patients with coronary artery disease and without clinical heart failure (LVEF > 40%), on top of optimal background therapy. A therapeutic scheme higher than the approved posology was used (starting dose 7.5 mg b.i.d. (5 mg b.i.d, if age ≥ 75 years) and titration up to 10 mg b.i.d). The main efficacy criterion was the composite of cardiovascular death or non-fatal MI. The study showed no difference in the rate of the primary composite endpoint (PCE) in the ivabradine group by comparison to the placebo group (relative risk ivabradine/placebo 1.08, p=0.197). Bradycardia was reported by 17.9 % of patients in the ivabradine group (2.1% in the placebo group). Verapamil, diltiazem or strong CYP 3A4 inhibitors were received by 7.1% of patients during the study.

A small statistically significant increase in the PCE was observed in a pre-specified subgroup of patients with angina patients in CCS class II or higher at baseline (n=12049) (annual rates 3.4% versus 2.9%, relative risk ivabradine/placebo 1.18, p=0.018), but not in the subgroup of the overall angina population in CCS class ≥ I (n=14286) (relative risk ivabradine/placebo 1.11, p=0.110).

The higher than approved dose used in the study did not fully explain these findings.
The SHIFT study was a large multicentre, international, randomised double-blind placebo controlled outcome trial conducted in 6505 adult patients with stable chronic CHF (for ≥ 4 weeks), NYHA class II to IV, with a reduced left ventricular ejection fraction (LVEF ≤ 35%) and a resting heart rate ≥ 70 bpm.

Patients received standard care including beta-blockers (89 %), ACE inhibitors and/or angiotensin II antagonists (91 %), diuretics (83 %), and anti-aldosterone agents (60 %). In the ivabradine group, 67% of patients were treated with 7.5 mg twice a day. The median follow-up duration was 22.9 months. Treatment with ivabradine was associated with an average reduction in heart rate of 15 bpm from a baseline value of 80 bpm. The difference in heart rate between ivabradine and placebo arms was 10.8 bpm at 28 days, 9.1 bpm at 12 months and 8.3 bpm at 24 months.

The study demonstrated a clinically and statistically significant relative risk reduction of 18% in the rate of the primary composite endpoint of cardiovascular mortality and hospitalisation for worsening heart failure (hazard ratio: 0.82, 95%CI [0.75;0.90] – p<0.0001) apparent within 3 months of initiation of treatment. The absolute risk reduction was 4.2%. The results on the primary endpoint are mainly driven by the heart failure endpoints, hospitalisation for worsening heart failure (absolute risk reduced by 4.7 %) and deaths from heart failure (absolute risk reduced by 1.1 %).

Treatment effect on the primary composite endpoint, its components and secondary endpoints

<table>
<thead>
<tr>
<th></th>
<th>Ivabradine (N=3241) n (%)</th>
<th>Placebo (N=3264) n (%)</th>
<th>Hazard ratio [95% CI]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary composite endpoint</td>
<td>793 (24.47)</td>
<td>937 (28.71)</td>
<td>0.82 [0.75; 0.90]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Components of the composite:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CV death</td>
<td>449 (13.85)</td>
<td>491 (15.04)</td>
<td>0.91 [0.80; 1.03]</td>
<td>0.128</td>
</tr>
<tr>
<td>- Hospitalisation for worsening HF</td>
<td>514 (15.86)</td>
<td>672 (20.59)</td>
<td>0.74 [0.66; 0.83]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Other secondary endpoints:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- All cause death</td>
<td>503 (15.52)</td>
<td>552 (16.91)</td>
<td>0.90 [0.80; 1.02]</td>
<td>0.092</td>
</tr>
<tr>
<td>- Death from HF</td>
<td>113 (3.49)</td>
<td>151 (4.63)</td>
<td>0.74 [0.58;0.94]</td>
<td>0.014</td>
</tr>
<tr>
<td>- Hospitalisation for any cause</td>
<td>1231 (37.98)</td>
<td>1356 (41.54)</td>
<td>0.89 [0.82;0.96]</td>
<td>0.003</td>
</tr>
<tr>
<td>- Hospitalisation for CV reason</td>
<td>977 (30.15)</td>
<td>1122 (34.38)</td>
<td>0.85 [0.78; 0.92]</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

The reduction in the primary endpoint was observed consistently irrespective of gender, NYHA class, ischaemic or non-ischaemic heart failure aetiology and of background history of diabetes or hypertension.

In the subgroup of patients with HR ≥ 75 bpm (n=4150), a greater reduction was observed in the primary composite endpoint of 24 % (hazard ratio: 0.76, 95%CI [0.68;0.85] – p<0.0001) and for other secondary endpoints, including all cause death (hazard ratio: 0.83, 95%CI [0.72;0.96] – p=0.0109) and CV death (hazard ratio: 0.83, 95%CI [0.71;0.97] – p=0.0166). In this subgroup of patients, the safety profile of ivabradine is in line with the one of the overall population.
A significant effect was observed on the primary composite endpoint in the overall group of patients receiving beta blocker therapy (hazard ratio: 0.85, 95%CI [0.76;0.94]). In the subgroup of patients with HR ≥ 75 bpm and on the recommended target dose of beta-blocker, no statistically significant benefit was observed on the primary composite endpoint (hazard ratio: 0.97, 95%CI [0.74;1.28]) and other secondary endpoints, including hospitalisation for worsening heart failure (hazard ratio: 0.79, 95% CI [0.56;1.10]) or death from heart failure (hazard ratio: 0.69, 95% CI [0.31;1.53]).

There was a significant improvement in NYHA class at last recorded value, 887 (28%) of patients on ivabradine improved versus 776 (24%) of patients on placebo (p=0.001).

Paediatric population
The European Medicines Agency has waived the obligation to submit the results of studies with Coralan in all subsets of the paediatric population in the treatment of angina pectoris. The European Medicines Agency has deferred the obligation to submit the results of studies with Coralan in one or more subsets of the paediatric population in the treatment of chronic heart failure (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

Under physiological conditions, ivabradine is rapidly released from tablets and is highly water-soluble (>10 mg/ml). Ivabradine is the S-enantiomer with no bioconversion demonstrated in vivo. The N-desmethylated derivative of ivabradine has been identified as the main active metabolite in humans.

Absorption and bioavailability
Ivabradine is rapidly and almost completely absorbed after oral administration with a peak plasma level reached in about 1 hour under fasting condition. The absolute bioavailability of the film-coated tablets is around 40%, due to first-pass effect in the gut and liver. Food delayed absorption by approximately 1 hour, and increased plasma exposure by 20 to 30 %. The intake of the tablet during meals is recommended in order to decrease intra-individual variability in exposure (see section 4.2).

Distribution
Ivabradine is approximately 70% plasma protein bound and the volume of distribution at steady-state is close to 100 l in patients. The maximum plasma concentration following chronic administration at the recommended dose of 5 mg twice daily is 22 ng/ml (CV=29%). The average plasma concentration is 10 ng/ml (CV=38%) at steady-state.

Biotransformation
Ivabradine is extensively metabolised by the liver and the gut by oxidation through cytochrome P450 3A4 (CYP3A4) only. The major active metabolite is the N-desmethylated derivative (S 18982) with an exposure about 40% of that of the parent compound. The metabolism of this active metabolite also involves CYP3A4. Ivabradine has low affinity for CYP3A4, shows no clinically relevant CYP3A4 induction or inhibition and is therefore unlikely to modify CYP3A4 substrate metabolism or plasma concentrations. Inversely, potent inhibitors and inducers may substantially affect ivabradine plasma concentrations (see section 4.5).

Elimination
Ivabradine is eliminated with a main half-life of 2 hours (70-75% of the AUC) in plasma and an effective half-life of 11 hours. The total clearance is about 400 ml/min and the renal
clearance is about 70 ml/min. Excretion of metabolites occurs to a similar extent via faeces and urine. About 4% of an oral dose is excreted unchanged in urine.

Linearity/non linearity
The kinetics of ivabradine is linear over an oral dose range of 0.5 – 24 mg.

Special populations
- Older people: no pharmacokinetic differences (AUC and Cmax) have been observed between elderly (≥ 65 years) or very elderly patients (≥ 75 years) and the overall population (see section 4.2).
- Renal impairment: the impact of renal impairment (creatinine clearance from 15 to 60 ml/min) on ivabradine pharmacokinetic is minimal, in relation with the low contribution of renal clearance (about 20 %) to total elimination for both ivabradine and its main metabolite S 18982 (see section 4.2).
- Hepatic impairment: in patients with mild hepatic impairment (Child Pugh score up to 7) unbound AUC of ivabradine and the main active metabolite were about 20% higher than in subjects with normal hepatic function. Data are insufficient to draw conclusions in patients with moderate hepatic impairment. No data are available in patients with severe hepatic impairment (see sections 4.2 and 4.3).

Pharmacokinetic/pharmacodynamic (PK/PD) relationship
PK/PD relationship analysis has shown that heart rate decreases almost linearly with increasing ivabradine and S 18982 plasma concentrations for doses of up to 15-20 mg twice daily. At higher doses, the decrease in heart rate is no longer proportional to ivabradine plasma concentrations and tends to reach a plateau. High exposures to ivabradine that may occur when ivabradine is given in combination with strong CYP3A4 inhibitors may result in an excessive decrease in heart rate although this risk is reduced with moderate CYP3A4 inhibitors (see sections 4.3, 4.4 and 4.5).

5.3 Preclinical safety data
Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential. Reproductive toxicity studies showed no effect of ivabradine on fertility in male and female rats. When pregnant animals were treated during organogenesis at exposures close to therapeutic doses, there was a higher incidence of foetuses with cardiac defects in the rat and a small number of foetuses with ectrodactylyia in the rabbit.

In dogs given ivabradine (doses of 2, 7 or 24 mg/kg/day) for one year, reversible changes in retinal function were observed but were not associated with any damage to ocular structures. These data are consistent with the pharmacological effect of ivabradine related to its interaction with hyperpolarisation-activated \(I_h \) currents in the retina, which share extensive homology with the cardiac pacemaker \(I_f \) current.

Other long-term repeat dose and carcinogenicity studies revealed no clinically relevant changes.

Environmental Risk Assessment (ERA)
The environmental risk assessment of ivabradine has been conducted in accordance to European guidelines on ERA. Outcomes of these evaluations support the lack of environmental risk of ivabradine and ivabradine does not pose a threat to the environment.
6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Core
Lactose monohydrate
Magnesium stearate
Maize starch
Maltodextrin
Silica, colloidal anhydrous (E 551)

Film-coating
Hypromellose
Titanium dioxide (E171)
Macrogol 6000
Glycerol
Magnesium stearate
Yellow iron oxide (E172)
Red iron oxide (E172)

6.2 Incompatibilities
Not applicable.

6.3 Shelf-life
3 years

6.4 Special precautions for storage
Store below 30°C.

6.5 Nature and contents of container
Aluminium/PVC blister packed in cardboard boxes.
Pack sizes
Calendar packs containing 14, 28, 56, 84, 98, 100 or 112 film-coated tablets.
Not all pack sizes may be marketed.

Manufacturer: Les Laboratoires Servier Industrie - France for
Les Laboratoires Servier, 50, rue Carnot, 92284 Suresnes cedex, France

License Holder: Mediline Ltd., 22 Ben Gurion St., Hezliya.

LICENSE NUMBER
Coralan 5 mg: 142-49-32001
Coralan 7.5 mg: 142- 48-32002